Beta Test Me!

Sometimes you need to slow things down to figure out what’s going on. At a molecular level, slowing things down requires some pretty specialized equipment: lasers.

Beta Test Me!

Picture this — you’re a worm. Yep, a worm. And not just any worm, a microscopic worm! How do you know where to go, or which way is up? And more importantly, why do we care? You’ll find out in this lesson.

Classroom Tested!

Picture it: A giant (like, seriously giant) tray full of bacteria. Billions and billions of bacteria just growing and spreading. A germaphobe’s worst nightmare? Nah. These bacteria (like most bacteria) are not only harmless, they’re providing new insights into how evolution works.

Beta Test Me!

Seen one solid, you’ve seen them all, right? Of course not. In fact, researchers recently developed a whole new type of solid that might be the key to future technologies, from clean energy to more powerful smartphones and computers.

Classroom Tested!

Fins, wings, and…fractions? Find out how simple measurements revealed a striking convergence among animals as varied as whales, birds, and sea butterflies. (Wondering what a sea butterfly is? We were, too. Lucky for you, the answer is in the Bite.)

Beta Test Me!

The vastness of space can boggle the mind, but when it comes down to it, the same forces that determine what happens when you drop an apple in the lunch line also determine how galaxies form and move. Of course, there isn’t much dark matter or gamma rays in the school cafeteria, but still, it’s mostly the same. You’ll see.

Beta Test Me!

Researchers, with a little help from fireflies, are developing new tools for studying cancer by applying their knowledge of electronegativity and bonding.

Classroom Tested!

What do a bat, a pig, a mouse, and an opossum have in common? In this lesson plan students will explore both the structural and genetic homology of tetrapods!

Classroom Tested!

Researchers have been tracking E.coli through 60,000 generations to answer a fundamental question: How does natural selection work in a constant, stable environment?

Beta Test Me!

What do aching knees, a sore back, diabetes, and poor eyesight have in common, besides being, well, common? You’ll find out in this lesson, but here’s a hint: it has something to do with evolution.

Beta Test Me!

Quantum physics is behind advances in digital cameras and cell phones, so it must also be able to explain the basics, right? Wrong. It turns out that classical physics doesn’t always work in the quantum world.

Classroom Tested!

Think that evolution always results in disadvantageous traits becoming less common in a population? Think again.

Beta Test Me!

Using DNA analysis, researchers were able to effectively trace the evolution of HIV backwards in time to find the common ancestor of HIV samples circulating among humans today. Why is that important? Because the lessons they learned about how the virus changes and spreads may help us to stay one step ahead of HIV in the future.

Beta Test Me!

There are more than 100,000 people in the United States in need of a healthy organ, whether liver, kidney, heart, or something else. Wouldn’t it be great if instead of having to wait for a donor, we could just print healthy organs, on-demand, for anyone who needs them? It sounds bonkers, but thanks to some cool chemistry, it just might one day be a reality.

Beta Test Me!

What separates the gold medal sprinters from the casual weekend jogger…besides the intense training, of course? Thanks to a careful analysis of human runners and good old-fashioned physics, we now have a pretty good idea.

Classroom Tested!

Researchers are making waves in an unlikely place: the human body. The reason? To detect and diagnose diseases.

Beta Test Me!

Space is big. (duh). So big that getting anywhere close to even our solar system’s nearest neighbors seems impossible. But what if we told you that you that researchers have a plan to make light-speed space exploration a reality? One-way trip to Proxima Centauri, anyone?

Beta Test Me!

How do you design a robot that can swim efficiently under water? Scientists are studying the physics behind dolphin movement for the answer! (And if you’re wondering why scientists are designing robots that can swim efficiently under water… this lesson covers that, too.)

Classroom Tested!

Tanning mice. Yep. You read that right. Mice with tans are at the center of this story of how researchers are looking into drugs that can trick our cells into tanning without the sun.

Classroom Tested!

Modern computer modeling unveils something surprising about a classic example of evolutionary convergence and divergence: the Anolis lizards of the Caribbean.

Beta Test Me!

Newton’s laws don’t only apply here on Earth. The most basic of physics principles are helping astronomers to understand strange phenomena lightyears away.

Beta Test Me!

When you think Galápagos, you probably think about biology (and with good reason), but as BiteScis co-founder Shannon Morey explains in this lesson, physics provides the key to understanding how climate change affects the Galápagos’s coral reef ecosystem.

Here There!

If you have any question, send us an email and we'll get back to you, soon.

Not readable? Change text. captcha txt